skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Hyunseung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We developed ultra-high energy storage density capacitors using a new class of lead-free bismuth pyrochlorebased dielectric film material systems with high breakdown strength and reliability. The 2 μm-thick pyrochlore ceramic film capacitors have demonstrated ultra-high energy densities around 90 J/cm3 with very low energy loss below 3%, which is achieved by the combination of high permittivity, pseudo-linear dielectric characteristics, and high breakdown electric field over 4.5 MV/cm. Particularly, these pyrochlore ceramic films can endure voltage strength up to ~900 V. These noteworthy pyrochlore ceramic films are fabricated by the lowcost chemical solution deposition process which allows dielectric films to be processed on standard platinized silicon wafers. This new class of capacitors can satisfy the emergent needs for significant reduction in size and weight of capacitors with high energy storage capability in power electronics, electric vehicles, and energy storage in sustainable energy systems. Our research provides a unique and economical platform for the processing of this useful pyrochlore material in large volume for eco-friendly energy applications. 
    more » « less